Linear instability of relative equilibria for n-body problems in the plane
نویسندگان
چکیده
منابع مشابه
Relative Equilibria for the Generalized Rigid Body
This paper gives necessary and sufficient conditions for the (n-dimensional) generalized free rigid body to be in a state of relative equilibrium. The conditions generalize those for the case of the three-dimensional free rigid body, namely that the body is in relative equilibrium if and only if its angular velocity and angular momentum align, that is, if the body rotates about one of its princ...
متن کاملstudy of cohesive devices in the textbook of english for the students of apsychology by rastegarpour
this study investigates the cohesive devices used in the textbook of english for the students of psychology. the research questions and hypotheses in the present study are based on what frequency and distribution of grammatical and lexical cohesive devices are. then, to answer the questions all grammatical and lexical cohesive devices in reading comprehension passages from 6 units of 21units th...
Reduction, Relative Equilibria and Stability for a Gyrostat in the N-body Problem
We consider the non-canonical Hamiltonian dynamics of a gyrostat in the nbody problem. Using the symmetries of the system we carry out a reduction process in two steps, giving explicitly at each step the Poisson structure of the reduced system. Next, we obtain general properties of the relative equilibria of the problem and if we restrict to different approximations of the gravitational potenti...
متن کاملFiniteness of Relative Equilibria in the Planar Generalized N-body Problem with Fixed Subconfigurations
We prove that a fixed configuration of N − 1 masses in the plane can be extended to a central configuration of N masses by adding a specified additional mass only in finitely many ways. This holds for a family of potential functions including the Newtonian gravitational case and the classical planar point vortex model.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2014
ISSN: 0022-0396
DOI: 10.1016/j.jde.2014.05.017